This post was published in 2021-12-07. Obviously, expired content is less useful to users if it has already pasted its expiration date.
主要内容
Kruskal算法
矩阵运算
(和SVM相关的)拉格朗日, KKT
SVM / Soft margin SVM / 软间隔支持向量机
Gibbs sampling(鸽了)
Kruskal算法
🔗 [最小生成树之Kruskal算法_Enstein_Jun-CSDN博客_kruskal算法] https://blog.csdn.net/luomingjun12315/article/details/47700237
矩阵运算
Dot product / 内积 🔗 [数量积 - 维基百科,自由的百科全书] https://zh.wikipedia.org/zh-hans/%E7%82%B9%E7%A7%AF
一些常见的矩阵运算 🔗 [Cheatsheet - Matrix - SolutionHacker.com] http://solutionhacker.com/cheatsheet-matrix/
(和SVM相关的)拉格朗日, KKT
🔗 [拉格朗日乘数 - 维基百科,自由的百科全书] https://zh.wikipedia.org/zh-hans/%E6%8B%89%E6%A0%BC%E6%9C%97%E6%97%A5%E4%B9%98%E6%95%B0
🔗 [Karush-Kuhn-Tucker (KKT)条件 - 知乎] https://zhuanlan.zhihu.com/p/38163970
SVM / Soft margin SVM / 软间隔支持向量机
🔗 SVM中,高斯核为什么会把原始维度映射到无穷多维? - 张骞晖的回答 - 知乎 https://www.zhihu.com/question/35602879/answer/92835616
剩余部分来自中文《统计学习方法》
Gibbs sampling
(鸽了)